A simple parametric bootstrap algorithm for location-scale regression models
from the lmls()
function.
Arguments
- m
A location-scale regression model from the
lmls()
function.- num_samples
The number of bootstrap samples to draw.
- seed
Either
NULL
or an integer that will be used in a call toset.seed()
before simulating the response vectors.
Value
An lmls
S3 object, see lmls()
. The entry boot
with the matrices of
bootstrap samples is added to the object as a list with the names location
and scale
.
Examples
library(lmls)
m <- lmls(y ~ poly(x, 2), ~ x, data = abdom, light = FALSE)
m <- boot(m)
summary(m, type = "boot")
#>
#> Call:
#> lmls(location = y ~ poly(x, 2), scale = ~x, data = abdom, light = FALSE)
#>
#> Deviance residuals:
#> Min. 1st Qu. Median Mean 3rd Qu. Max.
#> -3.363000 -0.701400 -0.048870 -0.000149 0.623200 4.066000
#>
#> Location coefficients (identity link):
#> Mean 2.5% 50% 97.5%
#> (Intercept) 226.73 225.61 226.74 227.80
#> poly(x, 2)1 2160.38 2128.34 2160.70 2190.49
#> poly(x, 2)2 -99.44 -124.54 -99.13 -75.79
#>
#> Scale coefficients (log link):
#> Mean 2.5% 50% 97.5%
#> (Intercept) 1.35639 1.16229 1.35777 1.545
#> x 0.04217 0.03563 0.04216 0.049
#>
#> Residual degrees of freedom: 605
#> Log-likelihood: -2396.41
#> AIC: 4802.82
#> BIC: 4824.89
#>
hist(m$boot$scale[, 2])